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The behaviour of spherical Brownian particles in a near-wall shear flow is explored
using Langevin simulations and experimental measurements, focusing on the effects
of anisotropic hindered particle mobility and the formation of a particle depletion
layer due to repulsive forces. The results are discussed in the context of particle
velocity distributions obtained by near-wall image-based velocimetry. It is observed
that the shear force and dispersion dominate at high Péclet number (Pe > 3), and
the asymmetric shapes of particle velocity distributions are attributed to broken
symmetry due to the presence of the wall. Furthermore, the excursions outside the
observation depth between image acquisitions and the shear-induced slowdowns of
tracer particles cause significant measurement bias for long and short inter-frame time
intervals, respectively. Also impeding the measurement accuracy is the existence of a
near-wall particle depletion layer that leads to an overestimation of the fluid velocity.
An analytical protocol to infer the correct fluid velocity from biased measurements is
presented.

1. Introduction
Colloidal particle-based image velocimetry is a widely utilized experimental

technique for measuring fluid velocity profiles and other physical quantities. Its
accuracy heavily relies on the assumption that tracer particles will conform to local
fluid translational motion. In the past decade, particle image velocimetry (PIV) has
been extended to the micro- (Santiago et al. 1998) and nanoscale (Zettner & Yoda
2003; Jin et al. 2004; Guasto, Huang & Breuer 2006; Huang, Guasto & Breuer 2006;
Bouzigues, Tabeling & Bocquet 2008; Guasto & Breuer 2008; Li & Yoda 2008;
Pouya et al. 2008) where the typical size of tracer particles has also decreased from
microns to nanometres. At these physical length scales, Brownian motion of tracer
particles can be quite significant, thus violating the assumption that tracer particles
travel at velocities equal to that of the surrounding fluid. Consequently, conducting
an accurate velocimetry experiment requires a good understanding and a careful
treatment of Brownian motion via either a thorough error analysis (Santiago et al.
1998), an ensemble correlation averaging technique (Wereley & Meinhart 2005), a
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statistical analysis of the particle ensemble’s distribution (Guasto 2008; Li & Yoda
2008) or a method of statistical tracking (Guasto et al. 2006).

Recently, PIV techniques have been applied to observe fluidic and colloidal
dynamics near a solid wall. In these experiments tracer particles are imaged through
regular fluorescence microscopy (Joseph & Tabeling 2005) or total internal reflection
fluorescence microscopy (TIRFM) (Huang et al. 2006; Bouzigues et al. 2008; Li &
Yoda 2008), in which the depth of observation is approximately 300 nm and allows
investigators to directly observe the near-wall region in the nanoscale. However, the
finite thickness of the observation depth can bias the experimental results if the tracer
particle motion is stochastic with spatially dependent transport properties. One such
example is described below.

In the vicinity of a solid wall, a colloidal particle will experience an anisotropic
‘hindered’ Brownian motion due to an increase of its hydrodynamic drag. This
reduced mobility has been reported both theoretically (Brenner 1961; Goldman, Cox
& Brenner 1967a ,b; Chaoui & Feuillebois 2003) and experimentally (Bevan & Prieve
2000; Lin, Yu & Rice 2000; Banerjee & Kihm 2005; Oetama & Walz 2006; Huang &
Breuer 2007a). In most cases, such a spatially dependent hindered mobility leads to
difficulties in determining measurement uncertainties, although a few researchers have
managed to turn the disadvantages into merits by proposing usage of the hindered
Brownian motion to reconstruct near-wall shear flow velocity profile (Hohenegger
& Mucha 2007) and to probe the no-slip boundary condition (Lauga & Squires
2005).

There are two equally appropriate approaches that have been used to study the
ensemble behaviour of hindered particle motions (Ermak & McCammon 1978).
One is the Fokker–Planck approach, which solves the momentum-space partial
differential equations to obtain a time evolution of spatial configuration function of
the particle ensemble. The other approach is a Langevin simulation, which simulates
the motion of each particle in a large ensemble through a stochastic differential
equation. In this approach, both deterministic (such as fluid flow, sedimentation
and electrostatic repulsion) and stochastic (such as Brownian motion) processes
contribute to particle displacements. The overall simulation then yields a spatial
distribution of the particle ensemble after each time step. Details provided by this
method are not only intuitive in understanding ensemble behaviour but also bear a
close resemblance to physical velocimetry experiments. The usefulness of Langevin
simulations has been demonstrated in studying the impact of hindered Brownian
diffusion on the accuracy of nano-PIV (Sadr, Li & Yoda 2005), on the colloidal
particle deposition in a microchannel flow (Unni & Yang 2005) and on the accuracy
of potential energy profiles determined via total internal reflection microscopy (Sholl
et al. 2000).

Using the Fokker–Planck approach, Sadr et al. (2007) studied how the hindered
Brownian motions of tracer particles normal to the wall could cause bias on accuracy
of near-wall velocimetry measurements. While Pouya et al. (2008) had presented
experimental results that qualitatively support the simulation findings of Sadr et al.
(2007), these researchers did not consider the effect of fluid shear in their analysis and
therefore had overlooked the significant contribution of the shear-related hindered
mobility of tracer particles to velocimetry inaccuracy. In this article, we present our
simulation and experimental findings that shear effect would dominate over the effect
of hindered Brownian motion in a strong shear flow and thus becomes the primary
source of velocimetry measurement bias.
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Another source of velocimetry inaccuracy that has not yet been examined either
theoretically and experimentally is the existence of a near-wall depletion layer of
tracer particles due to electrostatic and van der Waals interactions between particles
and the wall (Prieve 1999; Guasto 2008; Li & Yoda 2008). In many published
studies researchers conveniently assume in near-wall velocimetry data analysis that
tracer particles are uniformly distributed without the presence of a depletion layer
near wall. However, this is an incorrect assumption that can lead to substantial
velocimetry measurement inaccuracy. If a significant portion of the observation depth
overlaps with a depletion layer, it causes the ensemble-averaged velocities of near-
wall particles to be greatly skewed and therefore significantly deviates from the
average fluid velocity in the observed layers. Thus from the perspective of velocimetry
accuracy, it is critical to understand how the presence of a particle depletion layer
leads to measurement bias.

To better understand and correct such measurement deficiencies we have chosen
to investigate near-wall particle dynamics through both Langevin simulations and
experimental measurements. We directly examine how the combined effects of
hindered diffusion and fluid shear contribute to the skewed near-wall apparent
velocity distributions first reported by Jin et al. (2004) in their total internal reflection
velocimetry (TIRV) experiment, and how such skewed measurements contribute to
velocimetry inaccuracy. Furthermore, Derjaguin, London, Verwey and Overbrook
(DLVO) theory of particle-wall interactions are incorporated into our Langevin
simulations and experimental data analysis to demonstrate the significance of the
particle depletion layer in terms of measurement bias. Based on our simulation
and experimental results, we propose a data analysis protocol that will enable one
to systematically treat the measurement bias and infer the actual near-wall fluid
velocities.

In this paper, the theories of near-wall particle dynamics are presented first and
followed by a detailed description of the simulation algorithm and experimental
procedures. We then discuss the effects of shear hindered Brownian motion and
particle-wall interaction and their implications to velocimetry through a comparative
analysis of our simulation and experimental results. The paper concludes with a
summary of our findings and our thoughts on minimizing inaccuracies of near-wall
velocimetry measurements.

2. Theoretical considerations
To examine the accuracy of particle-based velocimetry through both simulations

and experiments, it is critical to understand the dynamic theories of near-wall
tracer particles, whose translational motions are influenced by local fluid shear force,
hindered Brownian motion and particle-wall electrostatic repulsion and van der Waals
attractive force. In this section, we introduce the Langevin equation for a charged
near-wall particle, and subsequently incorporate all dynamic forces to establish a non-
dimensional equation of motion that serves as our basis for experimental data analysis
and numerical simulation. Detailed descriptions of the simulation and experimental
methodologies are presented in the ensuing sections.

2.1. The Langevin equation

In a Langevin simulation, particle displacements are computed based on a stochastic
equation (Ermak & McCammon 1978). For a particle in a shear flow as shown in
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Figure 1. A schematic of the simulation geometry and the experimental set-up. A colloidal
particle of radius a is freely suspended in a fluid but near a solid wall. The fluid is undergoing
a linear shear flow of shear rate S, while the particle translates with a velocity vp . A no-slip
boundary condition is assumed at all fluid/solid wall interfaces. Even though the existence
of slip has been reported by Huang et al. (2006), its presence would not alter the simulation
results and is thus neglected. To measure the motion of a near-wall particle experimentally,
an evanescent field is created at the glass-water interface of a poly-dimethyl siloxane (PDMS)
microchannel with a penetration depth of approximately 150 nm. This penetration depth,
however, is different from the observation depth, which is denoted as w in the figure and
is typically a few times larger than the penetration depth. The flow is driven by a syringe
pump, and displacement of particles are tracked by imaging the emitted fluorescence using an
intensified CCD (ICCD) camera.

figure 1, its displacement between time ti and ti+1 with a time interval of ti+1 − ti = δt

is

xi+1 − xi = vδt +
dDx

dx
δt +

Dx

kBΘ
Fxδt + N(0,

√
2Dxδt), (2.1a)

zi+1 − zi =
dDz

dz
δt +

Dz

kBΘ
Fzδt + N(0,

√
2Dzδt), (2.1b)

where (x, z) is the particle’s centre position, v is the translational velocity of the
particle due to the shear flow, kB is the Boltzmann constant and Θ is the fluid
temperature. Because particles also undergo Brownian motions, the observed particle
velocity vp , can be different from v. Dx and Dz are the diffusion coefficients in the
directions parallel and normal to the wall surface, respectively. In the fluid bulk, or
z � a, both Dx and Dz would be equal to the Stokes–Einstein diffusivity D0. As it has
been mentioned earlier, near-wall particle motion is anisotropic and hindered, and
thus Dx �= Dz and Dx, Dz � D0. It should be noted that because Dx is only a function
of z (Goldman et al. 1967a), dDx/dx = 0 in (2.1a). The z-dependency of Dx and Dz

is discussed in subsequent sections. Fx and Fz represent external forces acting on the
particle in the x and z directions, respectively, and N(0,

√
2Dδt) denotes the hindered

Brownian motion in the form of stochastic particle displacements randomly sampled
from a normal distribution with a zero mean and a standard deviation

√
2Dδt . In a
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Pe

a (μm) G S (s−1) = 100 101 102 103

0.1 −5.042 × 10−5 0.0046 0.0463 0.4630 4.630
1.0 −0.5042 4.630 46.30 463.0 4630

Table 1. Sample values of the sedimentation coefficient G and the Péclet number Pe for
polystyrene particles in aqueous solution (�ρ = 50 kg m−3).

simple shear flow scheme there exists no external force in the x direction and Fx = 0.
In the z direction, however, density mismatch between tracer particles and the fluid
can lead to either sedimentation or floatation of the particles. For monodisperse
particles with a density greater than that of the suspending fluid, such as polystyrene
particles (relative density 1.05) in water, the buoyancy force acting on the particles,
Fg , is

Fg =
4π

3
a3�ρg, (2.2)

where �ρ is the density difference between the tracer particles and the suspending
fluid, and g is the gravitational acceleration. Other external forces acting on the
particles may also include electrostatic repulsion and van der Waals attraction between
particles and the solid boundary surface, and can be calculated from the DLVO theory
(Oberholzer, Wagner & Lenhoff 1997).

The equations of motion (2.1a) and (2.1b) are non-dimensionalized by choosing the
particle radius a as the length scale and the time required for an isolated particle to
diffuse a distance of one radius a2/D0 as the time scale. Therefore (2.1a) and (2.1b)
can be transformed into

Xi+1 = Xi + F (Zi) · Pe · Zi · δT + N(0,
√

2βx(Zi)δT ), (2.3a)

and

Zi+1 = Zi +
dβz

dZ

∣∣∣∣
Zi

δT + (G + H ) · βz(Zi)δT + N(0,
√

2βz(Zi)δT ), (2.3b)

where X ≡ x/a, Z ≡ z/a and T ≡ D0t/a
2 are the non-dimensional x, z and t ,

respectively. The advection and Brownian motion terms are given by

F (Z) ≡ v

zS
, βx(Z) ≡ Dx (z)

D0

, βz(Z) ≡ Dz (z)

D0

,

where we have also introduced the fluid shear rate S. Finally, the flow conditions are
governed by a Péclet number Pe, a sedimentation coefficient G and a particle-wall
interaction coefficient H for electrostatic and van der Waals forces Fpw:

Pe ≡ Sa2

D0

, G ≡ 4πa4g�ρ

3kBΘ
, H (Z) ≡ Fpw(Z)a

kBΘ
.

The Péclet number represents the strength of shear compared with that of Brownian
motion, while the sedimentation coefficient characterizes the buoyancy force on the
particles. Representative values of Pe and G are shown in table 1. Because most near-
wall velocimetry measurements utilize submicron tracer particles, all results presented
in this paper fall under the regime of G � 1 where the buoyancy force is much
less significant than thermal energy-driven Brownian motion. On the other hand, H
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�t (ms)

a (μm) 0.1 1 10 100

0.1 0.022 0.22 2.2 22
1.0 0.000022 0.00022 0.0022 0.022

Table 2. Representative values of the non-dimensional time between consecutive image
acquisition, �T .

can lead to a depletion layer of particles and thus is taken into consideration and
discussed in a later section.

Finally, for image-based velocimetry measurements, another important control
parameter is the time between consecutive image acquisitions �t , from which the
fluid velocity is estimated. Some sample values of non-dimensional time between
consecutive image acquisition, �T = �tD0/a

2, for 1 μm and 100 nm particles are
shown in table 2.

2.2. Effects of shear on particle velocities

It is well known that shear and near-surface hydrodynamic effects can cause a tracer
particle to rotate and translate at a velocity lower than the local fluid velocity in the
same shear plane (Goldman et al. 1967b; Chaoui & Feuillebois 2003). Goldman et al.
(1967b) proposed that the translational velocity v of a particle with radius a in a
linear shear flow of a local shear rate S is given by

v

zS
≡ F (Z) � 1 − 5

16
(Z)−3, (2.4)

which is valid for large Z, and

v

zS
≡ F (Z) � 0.7431

0.6376 − 0.2 ln (Z − 1)
(2.5)

for small Z. Although there exists no analytical solution for intermediate values of Z,
Pierres et al. (2001) proposed a cubic approximation to numerical values presented
by Goldman et al. (1967b):

v

zS
≡ F (Z) �

(
1

Z

)
exp{0.68902 + 0.54756[ln(Z − 1)]

+ 0.072332[ln(Z − 1)]2 + 0.0037644[ln(Z − 1)]3}. (2.6)

In the current simulation, (2.4), (2.6) and (2.5) are used for particles positioned at
(Z − 1) � 1, 10−4 < (Z − 1) < 1 and (Z − 1) � 10−4, respectively. Because a particle’s
translational velocity depends on the shear rate and its distance to the wall, F needs
to be updated in (2.1a) at every time step of a Langevin simulation.

It has also been suggested that shear-induced lift can be a source of particle
migration away from the wall (King & Leighton 1997). However, based on the theory
presented by Cherukat & McLaughlin (1994), the shear-induced lift can be shown to
be insignificant for micro-and nanoparticles in a low shear flow regime, and thus will
be neglected (see Appendix).

2.3. Hindered Brownian motion

Near-wall tracer particles are known to exhibit anisotropic hindered Brownian motion
due to hydrodynamic effects, and their hindered diffusion coefficient in the direction
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parallel to the solid surface Dx is (Goldman et al. 1967a)

Dx

D0

≡ βx(Z) = 1 − 9

16
(Z)−1 +

1

8
(Z)−3 − 45

256
(Z)−4 − 1

16
(Z)−5 + O(Z)−6, (2.7)

where this ‘Method of Reflection’ approximation is more accurate for Z > 2. For
Z < 2, Goldman et al. (1967b) proposed an asymptotic solution:

Dx

D0

≡ βx(Z) = − 2 [ln (Z − 1) − 0.9543]

[ln (Z − 1)]2 − 4.325 ln (Z − 1) + 1.591
. (2.8)

In the direction normal to the wall, the modified diffusion constant Dz was first solved
by Brenner (1961) and later simplified by Bevan & Prieve (2000) into the equation

βz(Z) =
6 (Z − 1)2 + 2 (Z − 1)

6 (Z − 1)2 + 9 (Z − 1) + 2
, (2.9)

which is much less computationally intensive than the original infinite series solution.
Like the particle translational velocity, the dependence of these hindered diffusion
coefficients on Z requires them to be updated at every time step of a Langevin
simulation.

2.4. Electrostatic and van der Waals forces

The electrostatic repulsion Fel and the van der Waals force Fvdw acting on a suspended
particle due to the presence of the wall can be characterized by the DLVO theory
(Oberholzer et al. 1997). In dimensional terms,

Fel = 4πεε0a

(
kBΘ

e

)2
(

ζ̂p + 4γΩκa

1 + Ωκa

) [
4 tanh

(
ζ̂w

4

)]
κe−κ(z−a) ≡ Bpwκe−κ(z−a),

(2.10)

where ζ̂p = eζp/kBΘ , ζ̂w = eζw/kBΘ , γ = tanh(ζ̂p/4) and Ω = (ζ̂p − 4γ )/2γ 3.
Specifically, ε is the dielectric constant of the suspending medium, ε0 is the vacuum
electrostatic permeability, e is the elementary charge, κ is the inverse of the wall Debye
length and ζp and ζw are the ζ -potentials of the particle and the wall, respectively.
The van der Waals force, on the other hand, takes the form of

Fvdw =
Apw

6

[
− a

(z − a)2
− a

(z + a)2
+

1

z − a
− 1

z + a

]
, (2.11)

where Apw is the Hammaker’s constant for a spherical particle near a flat wall. With
Fpw = Fel +Fvdw , one can characterize the particle-wall interaction using the constant
H :

H =
Bpw

kBΘ
Ke−K(Z−1) +

Apw

6kbΘ

[
− 1

(Z − 1)2
− 1

(Z + 1)2
+

1

Z − 1
− 1

Z + 1

]
, (2.12)

where K = κa. Again since H depends on the value of Z, the quantity H needs to be
updated at each time step of a simulation.

3. Implementation of Langevin simulations
Since velocimetry experiments are conducted using dilute particle suspensions, our

Langevin simulations were conducted under an assumption of no particle–particle
interactions. At the beginning of each simulation, a particle was situated at X = 0 and
placed within a pre-determined range of 1 � Z � 10. In the absence of particle-wall
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electrostatic and van der Waals interactions, the particle is randomly placed within
the pre-determined range. However, in the event that particle-wall interactions were
important, initial position of the particle was randomly sampled from a Boltzmann
distribution (Jones 2002) based on the DLVO potential.

The simulation then progressed for a total of �T/δT steps as prescribed by (2.3a)
and (2.3b), with F , H and β ’s updated and the position (X, Z) of the particle recorded
after each time step. Because the solid wall was located at Z = 0, the smallest Z value
a particle could have was Z = 1, where the particle would be in contact with the wall.
A boundary condition was needed in the event that a particle attempted to enter the
solid wall during a simulation step. Peters & Barenbrug (2002a ,b) had studied the
efficiencies of different boundary conditions for Langevin simulations. Here we chose
a simple and yet effective specular reflection to prevent a particle from entering the
wall. This is also the only boundary in the simulation geometry as the particle is
allowed to move as far away from the solid as Brownian motion takes it. With the
time step taken small enough, enforcement of the boundary condition was seldom
triggered and less than 0.001 % of the simulated displacements required applications
of the boundary condition.

The single particle simulation was then repeated 105 times to obtain a large
ensemble. It was also repeated for various values of Pe to study its effect. The random
number generator, which controls initial particle positions, was seeded identically
for all simulation trials to ensure that the results were a consequence of physical
parameters only.

Finally, it is important to mention the selection of the size of the computational
time step δT , which has two physical constraints (Ermak & McCammon 1978). First,
the time step must be much greater than the particle momentum relaxation time
mD0/kBΘ , where m is mass of one particle. In non-dimensional terms it is equivalent
to

δT � mD0
2

kBΘa2
∼ O(10−6), (3.1)

for a > 100 nm. Second, numerical accuracy requires that the time step must be
short enough such that the diffusion coefficients, their gradients and particle hindered
mobility are essentially constant during the time step (i.e. δT � 1 for numerical
convergence). Therefore δT was chosen to be 10−4, which satisfies both constraints
and is numerically efficient.

4. Experimental procedures
4.1. Materials and optical system

A schematic of the experimental set-up is shown in figure 1. Flow experiments
were carried out in 197 μm × 40 μm × 10 mm, rectangular poly-dimethyl siloxane
(PDMS) (Sylgard 184 Silicone Elastomer, Dow Corning) microchannels fabricated
by a soft lithography technique (Xia & Whitesides 1998) and mounted on 170 μm
thick borosilicate cover glass. The working fluid was pure water (Fluka) with 2.5 mM
sodium chloride to reduce the Debye length to approximately 6.1 nm, and thus, reduce
the near-wall depletion layer of particles. A low volume fraction (0.01 %) of aqueous
polystyrene fluorescent particles (Duke Scientific) were used as tracers. The particles
had a mean radius of 100 nm ± 5 % and an emission wavelength of 612 nm. The flow
was driven by a syringe pump (Harvard Apparatus) equipped with an accumulator
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(to damp out oscillations) at a constant flow rate of 1.5 μL min−1 ± 0.0035 % for all
experiments.

Near-wall tracer particle images were captured using an objective-based TIRFM
imaging system (Axelrod 2001). The system was built around a Nikon Eclipse TE2000-
U inverted fluorescence microscope with the 514 nm line of an Argon-ion CW laser
(Coherent) as the excitation source with a penetration depth of 150 nm. Objective-
based TIRFM requires a high numerical aperture objective to achieve an incident
angle greater than the critical angle of the fluid–solid interface of the microchannel.
For this purpose, we used a CFI Apochromat TIRF 60X oil immersion objective with
a numerical aperture of 1.49. Fluorescence images of the particles were captured with
an intensified CCD (ICCD) camera (QImaging). The camera is capable of 1360 ×
1036 pixels, 12-bit images with an effective pixel size of 161.3 nm at 60X and a
minimum inter-frame time �t of about 1 ms, limited by the decay rate of the
intensifier phosphor screen.

4.2. Particle tracking

Image pairs were taken at 5 Hz with inter-image acquisition times varying from about
3–43 ms. The polystyrene particle diameters are below their emission wavelength, so
the diffraction-limited spot was imaged, which was several hundred nanometres
in diameter. Particles were detected by intensity thresholding the maximum pixel
value of an image until a possible particle was found. Next, the subpixel x and
y locations and peak intensity I were identified by least squares fitting a two-
dimensional, Gaussian profile to a 3 × 3 pixel array centred on the maximum intensity
pixel (Huang et al. 2006). The error in locating a subwavelength particle centre
through Gaussian fitting has been shown to be as small as 0.1 pixels for a signal-
to-noise ratio (SNR) greater than five (Cheezum, Walker & Guilford 2001). Particle
identification was performed for both images of an image pair, and subsequently the
identified particles were matched through a nearest neighbour search with window
shifting to capture large displacements stemming from long inter-frame times. The low
particle concentration helped to minimize misidentification. Once matched, particle
displacements (and velocities) were computed for all particles in the 1100 image pairs
per trial. Additionally, the the experimental depth of observation was determined by
comparing distributions of measured particle intensities to the expected distributions,
based on DLVO theory, penetration depth and particle size variation (Guasto 2008).
With a constant flow rate (constant velocity) and a fixed exposure time te (50 μs),
1100 image pairs were captured at each inter-frame time �t (3.1, 4.2, 5.6, 7.5, 10.1,
13.5, 18.1, 24.3, 32.5 and 43.6 ms), resulting in 6000–12 000 particle trackings per data
set. The tracked particle displacements were decomposed onto a new basis, which lies
along the mean measured flow direction to eliminate effects from misalignment of the
microchannel to the camera’s CCD array.

5. Results and discussions
5.1. Apparent velocity distributions and inter-image acquisition time

The apparent particle velocity distributions Vp are examined and shown in figures 2
(Langevin simulation) and 3 (experiment). The apparent velocity Vp of a particle is
defined by its displacement �X during the time between successive image acquisitions
�T . In these figures the apparent particle velocity distributions are scaled by the
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Figure 2. The relationship between streamwise apparent velocity distribution and the lengths
of time intervals between successive image acquisitions obtained from Langevin simulations.
The streamwise apparent velocity distributions are normalized by the average fluid velocity
〈Vf 〉 within the observation depth. All apparent velocity probability density functions (PDFs)
are obtained at Pe = 2.34 and with particles within the observation depth of 1 � Z � 3.5 at
T = 0 and T = �T . Note that the apparent velocity distribution narrows and skews with
increasing inter-acquisition time �T . For �T � 1, the apparent velocity distribution takes the
form of a Gaussian distribution.
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Figure 3. The relationship between streamwise apparent velocity distribution and the lengths
of time intervals between successive image acquisitions obtained in experimental measurements,
with the same parameters as in figure 2. Note that the apparent velocity distribution also
narrows and skews with increasing inter-acquisition time �T .

average fluid velocity within the same depth of observation, defined by

〈Vf 〉 =
1

Z2 − Z1

∫ Z2

Z1

Vf dZ, (5.1)

where Vf is the fluid velocity profile and the observation depth is Z1 � Z � Z2.
In figures 2 and 3, one can observe that the apparent particle velocity distributions

show remarkably similar shapes between the Langevin simulation and experimental
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Figure 4. The average apparent particle velocity obtained from Langevin simulations
(figure 2) and experiments (figure 3). That is, each data point in this figure is the average
value of one distribution from either figure 2 or 3. The experimentally measured velocities are
slightly higher than the velocities obtained from the simulations by 2 % –5 %. The error bars
represent 99 % statistical confidence intervals.

results. Quantitative comparison between the two figures reveals that the mean value
of the apparent particle velocity distribution obtained from the Langevin simulation
is slightly lower than that of the experimental results, ranging from 2 % at �T = 0.9
to 5 % at the highest �T = 9.2 (figure 4). Furthermore, for a fixed Pe it is observed in
figures 2 and 3 that Brownian motion is dominant at small �T , leading to apparent
velocity distributions that are Gaussian and significantly wider than that of large �T .
As �T increases, the apparent velocity distributions in both figures narrow due to
increasing shear dominance. Such change can be explained by the fact that the width
of the averaged Brownian motion velocity VBM scales with �T −1/2,

�X ∼
√

�T ⇒ VBM =
�X

�T
∼ 1√

�T
, (5.2)

while the shear-induced flow velocity distribution width scales linearly with �T . Thus
Brownian motion accounts for a large fraction of the measured apparent velocity
at short inter-acquisition time, while the majority of the measured velocity is due to
the shear flow at large �T . Clearly, if the apparent velocity distributions evolve as
a function of inter-acquisition time, the accuracy of particle-based velocimetry must
also depend on the length of inter-acquisition time as well.

5.2. Velocimetry measurement bias due to hindered particle mobility

The objective of velocimetry is to infer fluid velocities from the measured particle
translational velocities Vp . In practice, this is achieved by computing an average
velocity of all particles within a depth of observation Z1 � Z � Z2 to estimate the fluid
velocity either by finding the maximal correlation value (as used in PIV) or through
direct calculation (as used in particle tracking velocimetry (PTV)). We denote this
statistical mean velocity of the particle ensemble as 〈Vp〉. When analysing Langevin
simulation or experimental data, 〈Vp〉 can be computed by

〈Vp〉 =
〈�X〉
�T

, (5.3)
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Figure 5. The relationship between velocimetry measurement accuracy 〈Vp〉/〈Vf 〉 and the
lengths of time intervals between successive image acquisitions obtained from Langevin
simulation. The results at various Pe for a depth of observation of 1 � Z � 3 are shown.
Note that data of all Pe collapse onto each other and show a minimum velocity ratio at
approximately the same �T = 1.

where 〈�X〉 is the mean displacement of all particles that are present inside the
depth of observation at the times of successive image acquisitions. Mathematically,
these particles’ Z positions must satisfy the requirements that Z1 � Z (T = 0) � Z2

and Z1 � Z (T = �T ) � Z2 in order to be imaged at both image acquisitions of the
image pair. Therefore, 〈Vp〉/〈Vf 〉 is the mean values of the scaled apparent velocity
distributions shown in figures 2 and 3, and can be interpreted as a measure of
velocimetry accuracy, with 〈Vp〉/〈Vf 〉 = 1 being the perfect measurement.

The first velocimetry scenario being considered is that of a measurement conducted
with uniform particle distribution, where the particle ensemble do not experience any
external forces in the direction normal to the wall (i.e. G = 0, H = 0). The time
dependency of the velocimetry accuracy for an observation depth of 1 � Z � 3 in
this idealized scenario is shown in figure 5. It can be observed that all 〈Vp〉/〈Vf 〉
ratios exhibit the form of a concave-up function of �T , with a minimum occurring
at approximately �T = 1. Figure 5 also shows that the measurement accuracy
is independent of Péclet number, suggesting that changes of flow strength do not
significantly affect the velocimetry accuracy. Such observation should not come as
a surprise since the fundamental working principle of particle velocimetry is that
particle velocities increase or decrease proportionally to the changes in the magnitude
of fluid flow. For example, doubling the fluid flow velocity should lead to doubling
of measured particle velocities while maintaining the same percentage error. Still, this
does not suggest that measurement bias is unaffected by shear as we will demonstrate
later in this section. When velocimetry measurement accuracy is compared across
different depths of observations 1 � Z � W = w/a, as shown in figure 6, concave-up
curves of similar shapes are observed. However, the curves do not fall on top of
each other, leading to the conclusion that velocimetry accuracy does depend on the
thickness of the observation depth, with increased underestimation of the true velocity
occurring for the smallest values of the observation depth W .

Sadr et al. (2007) had previously suggested that the velocimetry measurement
inaccuracy shown in figure 6 is the result of particles diffusing in and out the depth of
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Figure 6. Accuracy of the velocimetry derived from Langevin simulations, including one
physically inaccurate case where the shear-related hindered mobility of the particles is ignored
by assuming F (Z) = 1 (denoted ‘NSC”). The empirical fit proposed by Sadr et al. (2007) is also
shown for comparison. The depth of observation is defined as 1 � Z � W , where W = w/a.
Note that the fit of Sadr et al. (2007) closely matches the results of the ‘NSC’ case. Furthermore,
the fit of Sadr et al. (2007) predicts the true measurement accuracy very well for large values of
�T/ (W + 0.8)2 as the curves for all values of W collapse onto each other, while the prediction
is much less accurate at �T/ (W + 0.8)2 � 0.5. All data series have the same Pe = 30.

observation W between successive image acquisitions (i.e. during �T ). Thus, a more
sensible unit of time for investigating velocimetry accuracy is

�T

W 2
=

(
D0�t

a2

)(
a2

w2

)
=

D0�t

w2
, (5.4)

which is equivalent to the typical time scale for a Brownian particle to travel one
observation depth w. Sadr et al. (2007) explained their findings in that for small
�T imaged tracer particles are more likely to sample the lower velocity planes, and
thus the averaged apparent velocity of the particle ensemble 〈Vp〉 is lower than the
true fluid velocity average 〈Vf 〉. On the other hand at large �T there is a higher
probability that particles can sample velocity planes farther away from the surface
and still manage to return to the depth of observation at the time of second image
acquisition. Such excursions bias the observed particle displacements, leading to
erroneously large values of the particle translational velocity and thus overestimating
the fluid velocity. Sadr et al. (2007) further suggested that by rescaling �T with
(W + 0.8)2, the curves of 〈Vp〉/ 〈Vf 〉 ratios would collapse onto each other and they
offer a numerical model that can estimate measurement accuracy within 7% for all
�T . To compare their finding with our Langevin simulation results, the velocimetry
accuracy (figure 6) is plotted using the proposed alternative time scale of Sadr et al.
(2007) and compared with their numerical fit. In figure 6 it can be observed that
for large values of �T/ (W + 0.8)2 the velocimetry accuracy curves collapse onto
each other and the numerical model of Sadr et al. (2007) predicts the velocimetry
accuracy very well, while the curves still diverge at lower values of �T/ (W + 0.8)2

and the fit of Sadr et al. (2007) overestimates the velocimetry accuracy. Because
Sadr et al. (2007) examined only the effect of hindered particle Brownian motion
on velocimetry accuracy, the closeness of their numerical fit to our simulation data
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curves at large �T/ (W + 0.8)2 implies that under this range of time scale hindered
Brownian motion and the excursion of the particles outside the observation depth are
the main sources of velocimetry bias. On the other hand, the overestimation of their
numerical model on the measurement accuracy at small �T/ (W + 0.8)2 suggests that
under this time scale the bias is not solely dominated by hindered Brownian motion,
and shear-related hindered mobility of the particles also contributes significantly.
The significance of the shear-related hindered mobility is further supported by the
fact that in figure 6 the results of the ‘NSC’ case, which ignores any shear-related
corrections in particle translation by assuming F (Z) = 1, closely match the fitted
curve of Sadr et al. (2007). Because both of these cases unrealistically ignore the
shear-related effects, they produce predictions of much higher velocimetry accuracies
than the actual values. In figure 6 one can observe that the deviation between our
simulation results and the fit of Sadr et al. (2007) for �T/ (W + 0.8)2 � 0.5 grows
larger as W becomes smaller. Such a trend suggests that the role of shear-related
hindered mobility on velocimetry measurement bias becomes more prominent when
the depth of observation is set closer to the solid wall.

Our simulation findings also offer an analytical algorithm from which the true fluid
velocity can be estimated more accurately than from the correction curve that Sadr
et al. (2007) proposed. First, the velocimetry bias can be estimated by

〈Vp〉
〈Vf 〉 =

(
〈Vp〉
〈Vps〉

)(
〈Vps〉
〈Vf 〉

)
, (5.5)

where 〈Vps〉 is the mean velocity of a uniformly distributed particle ensemble
inside a depth of observation Z1 � Z � Z2, if particles do not experience Brownian
motion and only the shear-related hindered mobilities of the particles are considered.
Mathematically, in a linear shear flow 〈Vps〉 can be computed by

〈Vps〉 =
Pe

Z2 − Z1

∫ Z2

Z1

F (Z) · Z dZ, (5.6)

where F (Z) is the shear-related hindered particle mobility as described in § 2.
Therefore,

〈Vps〉
〈Vf 〉 =

Pe

〈Vf 〉 (Z2 − Z1)

∫ Z2

Z1

F (Z) · Z dZ, (5.7)

which can be easily calculated using (2.4), (2.5), (2.6) and (5.1) for the desired range of
Z. The values of 〈Vp〉/〈Vps〉, on the other hand, can be obtained from our Langevin
simulations. The values of 〈Vp〉/〈Vps〉 are found to exhibit a time scale similarity, as
demonstrated by all curves of 〈Vp〉/〈Vps〉 for various depths of observation collapsing
closely onto each other when plotted against T/W 2 in figure 7. The curves of
〈Vp〉/〈Vps〉 can be closely fitted by a numerical model first suggested by Sadr et al.
(2007),

〈Vp〉
〈Vps〉

≈ A + (1 − A) exp

(
−B

√
T

W 2

)
+ C

√
T

W 2
. (5.8)

By fitting equation (5.8) to the values of 〈Vp〉/〈Vps〉 for 1 � Z � 2 using a least square
of residual method, we found that A = 0.43, B = 1.85 and C = 0.63, and the resulting
fit predicts the 〈Vp〉/〈Vps〉 values of all depths of observation to within 3 %. Thus
by combining (5.5), (5.7) and (5.8), an appropriate correction factor to 〈Vp〉 can be
obtained to estimate the true fluid velocity with a less than 3 % inaccuracy.
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Figure 7. The dependency of 〈Vp〉/〈Vps〉 on the lengths of time intervals between successive
image acquisitions, calculated based on the results of Langevin simulations. Because 〈Vps〉 takes
the shear-related effect into consideration, 〈Vp〉/〈Vps〉 represents the measurement inaccuracy
resulted from hindered Brownian motion of particles. The measurement accuracy curves for
all observation ranges of 1 � Z � W show a scaling similarity under a time scale of �T/W 2.
A least square residual fit of (5.8) to the data of W = 2, denoted ‘Best fit of W = 2’, is found
to predict 〈Vp〉/〈Vps〉 to within 3 % of the actual values for all W .

5.3. Velocimetry measurement bias due to the presence of a particle depletion layer

The accuracy of particle-based velocity measurements can be further compromised if
there exists a sampling bias of the fluid velocities due to a non-uniform distribution of
particles. Specifically, it has been a common practice in reported near-wall velocimetry
studies to complete data analysis by assuming that tracer particles are uniformly
distributed within the observation depth, while not being aware of the potential
sampling bias existing in the system. A common mis-sampling of this sort in almost
all aqueous fluids is due to electrostatic and van der Waals forces between particles
and the wall as described in § 2.4. To demonstrate that our Langevin simulation
can accurately capture such particle-wall interactions (i.e. H �= 0) based on the
DLVO theory, a trial simulation was conducted with an initially uniform particle
concentration distribution in the wall-normal direction. Periodic samplings of the
particle distribution profile at various time T are shown in figure 8, and it is observed
that the spatial distribution of a particle ensemble that start out uniformly evolves
with time and eventually settles into a steady, non-uniform spatial distribution after
a transient period, with the final spatial distribution agreeing with the Boltzmann
distribution prediction based on the DLVO theory. Note that there is both a depletion
layer (approximately Z � 1.5 for the presented case in figure 8), induced by electrostatic
repulsion, followed by a near-wall peak, induced by the van der Waals attractive forces,
before the concentration settles to the bulk value. These results support the notion
that the DLVO–Boltzmann distribution is the steady-state concentration profile of
a particle ensemble experiencing electrostatic and van der Waals interaction with
the wall. But more importantly the depletion layer will lead to a significant bias
in any estimated velocity distribution, as very slow-moving particles near the wall
will be underrepresented, while there will be an excess sampling of the shear plane
corresponding to the DLVO peak.
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Figure 8. Simulated spatial distribution of particles at K = 16.33, which is equivalent to a
100 nm-radius polystyrene particle (density 1050 kg m−3) suspended in water of 2.5 mM ionic
concentration with a Debye length of 6.1 nm. The particles are initially uniformly distributed
in the volume (1 � Z � 10) at T = 0 and allowed to translate due to Brownian motion,
electrostatic repulsion and van der Waals force. The motion of the particles are confined
to only within this volume for mass conservation. Note that the spatial distribution of the
particles settles into the Boltzmann distribution after a transient period (T ≈ 10).

A full Langevin simulation incorporating DLVO interactions (H �= 0) was
conducted and compared with experimental measurements to investigate its effect.
In this simulation, particles are initially seeded according to the DLVO–Boltzmann
distribution shown in figure 8 by assuming that the particle ensemble has reached
the spatially steady state. The rest of the simulation steps follow that of § 2, with
particles experiencing hindered Brownian motion, electrostatic and van der Waals
forces at each time step. The simulation was conducted using Debye length and
Péclet number identical to that of the experimental conditions described in § 4.1
for comparison. The experimental and simulation results are compared and shown
in figures 9, 10 and 11. In figure 9, the velocimetry accuracy parameter 〈Vp〉/〈Vf 〉
is plotted against the time between image acquisitions �T for simulations with and
without a DLVO depletion layer and compared with experimental measurements. The
velocimetry accuracy curves for both cases of simulations show a similar tendency
of starting out at a constant level, subsequently decreasing to a global minimum,
and finally increasing unboundedly with increasing �T . However, a large gap exists
between the two curves, suggesting that failure to consider the depletion layer can lead
to substantial measurement bias. In fact, for the depth of observation (1 � Z � 3.5)
under consideration, the particle depletion layer always leads to an overestimation
of fluid velocity, as the curve of DLVO depletion layer stays above the line of
〈Vp〉 / 〈Vf 〉 = 1. Also shown in figure 9 is that our experimental results closely match
that of simulations with a DLVO depletion layer, further confirming that a particle
depletion layer exists near a charge solid wall and require significant attention during
velocimetry data analysis.

In figure 10, the velocimetry accuracy parameter is plotted against the time between
image acquisitions �T for different depths of observation. A unique feature in the
presence of DLVO interaction is that the ratio of 〈Vp〉/〈Vf 〉 is always larger than unity
for small �T . In fact, for depth of observation very close to the wall (i.e. small W ), the
ratio of 〈Vp〉/〈Vf 〉 stay above unity for all �T , suggesting that such near-wall particle
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Figure 9. Contribution of the particle depletion layer to velocimetry measurement bias.
Velocimetry accuracies 〈Vp〉/〈Vf 〉 from a Langevin simulation with and without incorporating
the DLVO theory, and experimental measurements are plotted and compared. Significant
differences between the two types of simulations are observed and the experimental
measurement results closely match the results of Langevin simulation with a DLVO depletion
layer. All data series, including simulations and experiments, have Pe = 2.34 and a depth of
observation of 1 � Z � 3.5.
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Figure 10. The dependency of velocimetry accuracy 〈Vp〉/〈Vf 〉 on the lengths of time
intervals between successive image acquisitions obtained from both Langevin simulation and
experimental measurements. In both cases, particles experience hindered Brownian motion,
DLVO particle-wall interactions and shear flow during their motions. The depth of observation
is defined as 1 � Z � W . Note that the depth of observation in our experimental measurements
is 1 � Z � 3.5. All data series, including simulations and experiments, have Pe = 2.34.

velocimetry measurements will always overestimate the actual fluid velocity within this
region. This can be explained by the significant overlapping of the observation depth
and the near-wall particle depletion layer, whose presence leads to bias sampling of
near-wall velocities and underrepresentation of the low fluid velocities near-wall in
the velocity distribution statistics. One significant area in which this bias may have
significant repercussions is in the use of particle velocimetry to estimate fluid slip
velocities near surfaces (Joseph & Tabeling 2005; Huang et al. 2006; Huang & Breuer
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Figure 11. Velocimetry accuracies from both Langevin simulations and experimental
measurements, with a rescaled non-dimensional time �T/W 2 and the shear-related effect
on particles taken into consideration by 〈Vp〉/〈Vps〉 as discussed in § 5.2 and (5.6). The
measurement accuracy curves for all observation ranges of 1 � Z � W again show a scaling
similarity, particularly for �T/W 2 � 0.02. All data series have Pe = 2.34.

2007b; Bouzigues et al. 2008). For instance, in our own previous studies of fluidic slip
(Huang et al. 2006; Huang & Breuer 2007b), as W ≈ 3.5 and �T ≈ 1, we estimate a
maximum of 3% additional error in slip velocity measurements should be assumed
based on the plots of figure 10. We recommend that future measurements should
explicitly estimate the velocimetry bias effects reported in this paper.

To further understand the effects of hindered Brownian motion, the presence of
the wall, and the electrostatic and van der Waals forces, the shear effect on particles
and the spatial distribution of the particle ensemble are taken into consideration by
plotting 〈Vp〉/〈Vps〉 against a rescaled non-dimensional time �T/W 2 in figure 11. Here
again we observe scaling similarity for all curves, particularly for �T/W 2 � 0.02. In
contrast to figure 10, the values within this region of rescaled non-dimensional time
remain less than unity. This suggests that proper consideration of near-wall particle
depletion layer during data analysis can reduce overestimation of fluid velocity.
For �T/W 2 > 0.02, however, the curves for different W values do not collapse as
completely as the curves in figure 7 do. This is most likely due to the different ratios
of depletion layer thickness to the depth of observation for different curves. This is
confirmed by the fact that as the values of W increases, the curves of 〈Vp〉/〈Vps〉 begin
to fall closer and closer to each other. Still, the method to obtain a better fluid velocity
estimate described in § 5.2, namely (5.5), can still be applied to improve velocimetry
accuracy. Such an operation can be achieved by using the values of 〈Vp〉/〈Vps〉
obtained from curves such as those shown in figure 11, and by incorporating the
DLVO–Boltzmann distribution of the particles, C(Z), to modify (5.7) into(

〈Vps〉
〈Vf 〉

)
=

Pe

〈Vf 〉 (Z2 − Z1)

∫ Z2

Z1

F (Z) · C(Z) · Z dZ. (5.9)

Again by combining (5.5), (5.8) and (5.9), an appropriate correction factor to 〈Vp〉
can be obtained.
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Figure 12. Apparent velocity distribution of simulated particles remaining in the observation
range 1 � Z � 3 after �T = 10. Larger Pe leads to an apparent velocity distribution with
larger mean, width and skewness.
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Figure 13. Rescaled apparent velocity distribution of simulated particles remaining in the
observation range 1 � Z � 3 after �T = 10. 〈Vp〉 is the mean value of each apparent velocity
PDF. The rescaled PDF’s collapse onto each other at Pe3. In general, larger Pe has a narrower
but more skewed distribution.

5.4. Apparent velocity distribution skewness and shear

Another useful feature of a two-dimensional Langevin simulation is the ability to
investigate the effects of shear and random (Brownian) motion on apparent velocity
distributions analysed in the context of Péclet numbers Pe. Shown in figure 12 is
the distribution of non-dimensional apparent velocity, Vp = �X/�T , for ensembles
of particles subject to different Péclet numbers. One can observe that the apparent
velocity PDFs widen and skew as the shear rate increases, in good agreement with the
experimentally measured PDFs reported by Jin et al. (2004) and Huang et al. (2006).

Upon further analysis, it is observed that, by scaling with the ensemble average
velocity 〈Vp〉, the apparent velocity PDFs collapse onto a single distribution for
Pe > 3, as shown in figure 13. The collapsed PDFs for Pe > 3 have a smaller
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Figure 14. Apparent velocity distribution of simulated particles at various depths of
observation. All apparent velocity distributions are obtained at �T = 10 and Pe = 10.
Particles that start off farther away from the surface move faster because they are carried by
fluids at higher velocity planes, and their distributions are more symmetric due to less influence
of the wall and hindered Brownian motion.

distribution width but a more pronounced skewness, while the rescaled distributions of
Pe < 3 are wider but more symmetric. Such scaling characteristics can be understood
by drawing analogy with the theory of Taylor dispersion. As in Taylor dispersion, the
case of Pe < 1 represents the streamwise diffusion overpowers over the convection
transport and cross-stream diffusion of particles. Therefore velocity distributions
measured based on particle translations would be dominated by the streamwise
diffusion whose relative magnitude increases with decreasing Péclet number, leading
to the large distribution widths for small Pe shown in figure 13. For Pe > 3 where
the assumption of Pe � 1 for Taylor dispersion is met, the width of a velocity
distribution σ scales with the particle dispersion parallel to the flow:

σ ∼
√

〈(Vp − 〈Vp〉)2〉 ∼
√

〈(�X − 〈�X〉)2〉 ∼
√

K ∼ Pe, (5.10)

where K is the Taylor diffusivity (Deen 1998). Since the average particle velocity 〈Vp〉
also scales with Pe, the width of a normalized velocity distribution (Vp − 〈Vp〉)/〈Vp〉
shown in figure 13 must scale with

σN =
σ

〈Vp〉 ∼ Pe

Pe
= 1. (5.11)

That is, for large Péclet number the normalized velocity distribution width is
independent of Péclet number due to Taylor dispersion. Indeed such dispersion
behaviour was also observed in experimental results reported by Huang et al. (2006),
and the agreement of the current Langevin simulation further validates the presented
physical arguments.

The sources of apparent velocity distribution skewness are the hindered Brownian
motion of the particles and more importantly, the presence of the wall. One can
observe in figure 14 that the apparent velocity PDFs for observation ranges farther
away from the wall are wider and less skewed than those obtained from observation
ranges closer to the wall. When an observation range is set to be far way from
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the wall, the targeted particle ensemble is equally likely to sample fluid velocities
that are both above and below the particle’s initial position within the observation
range, leading to a more symmetric apparent velocity distributions. However, for
particle ensembles that are close to the wall, such symmetric sampling is broken as
the particles are unable to penetrate the wall and therefore are more likely to sample
velocities at shear planes above the depth of observation. As a result, the apparent
velocity PDF has an asymmetric shape with a long positive tail coming from the bias
in sampling higher shear planes. Also contributing to the skewness are the hindered
Brownian motion and the shear-related hindered mobility of particles in the near-wall
region, while far away from the wall, their effects are less experienced.

The skewness of apparent velocity distributions could further lead to undesirable
velocimetry inaccuracy, particularly in the case of PIV which obtains an ensemble-
averaged displacement by searching for the most probable particle translation
through cross-correlation of several particles imaged in acquisitions. Statistically,
the correlation-based ensemble averaged displacement represents the particle
displacement that occurs most frequently, or the mode of particle displacement. This
is in contrast to using the statistical average, or the mean of the particle displacements
to calculate the ensemble velocity usually accomplished in PTV. Because the apparent
velocity distributions of the near-wall regions have long positive tails, as demonstrated
in figure 14, their statistical mean values will always be greater than the values of the
distribution modes. Referring back to figure 6, at �T/ (W + 0.8)2 � 0.5, PIV would
then underestimate the true fluid velocity more than PTV would as in this region
the obtained 〈Vp〉/〈Vf 〉 is less than one, and thus PTV would be more accurate than

PIV under this time scale. At �T/ (W + 0.8)2 > 0.5, on the other hand, PTV would
overestimate the true fluid velocity than PIV, suggesting that PIV might be the more
accurate for this time scale. However, such an improvement in measurement accuracy
could be offset by the fact the PIV algorithm is insensitive to particle drop-in and
drop-out between image acquisitions, and this can become a significant source of bias
at large �T . Such reasoning suggests that PTV is probably a more accurate method
for near-wall velocity measurements under most circumstances.

6. Concluding remarks
Through Langevin simulations and direct experimental measurements, we

demonstrate that shear-related hindered mobility of near-wall particles, previously
not considered, can contribute to near-wall velocimetry bias with as much influence
as much as the effects of hindered Brownian motion. In addition, we have shown that
the non-uniform distribution of particles near a wall due to electrostatic and van der
Waals forces is also a significant source of measurement inaccuracy that cannot be
ignored. In both cases, our results suggest an analytical method to obtain a better
estimate of the true fluid velocity through a combination of ‘velocimetry accuracy
curves’ and theoretical calculation of the hindered mobility and concentration profile
of near-wall particles. The protocol for a linear fluid velocity profile is summarized
as the following:

(i) From PTV data, compute 〈Vp〉, the mean apparent velocity of the tracer particles.
(ii) With a prior knowledge of the velocity profile model, calculate

Φ =
1

Z2 − Z1

∫ Z2

Z1

V (Z) dZ,
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where V (Z) = Z is the velocity profile model. Z1 and Z2 are the positions of the
observation depth low and upper boundaries, respectively. Φ is a single numerical
value.

(iii) Calculate

Ψ =
1

Z2 − Z1

∫ Z2

Z1

F (Z) · C(z) · V (Z) dZ

where F (Z) is computed using the velocity profile model V (Z) inside the observation
depth and C(Z) is the initial particle concentration profile. Ψ is also a single numerical
value.

(iv) Calculate the following quantity based on measurement parameters:

Π = 0.43 + (1 − 0.43) exp

(
−1.85

√
T

W 2

)
+ 0.63

√
T

W 2
.

(v) The true fluid velocity can be estimated using

〈Vf 〉 =

(
Φ

ΠΨ

)
〈Vp〉.

For nonlinear velocity profile models, the velocimetry correction factor (Φ/ΠΨ )
should not be obtained through the prescribed steps listed above as a linear V (Z)
is implicitly assumed in F (Z) and Π . However, the velocimetry correction factor
can be numerically obtained by running a Langevin simulation with the same
procedure described in this paper and incorporating the nonlinear velocity profile
models. Examples of nonlinear profiles include parabolic and exponential profiles for
a pressure driven flow and an electro-osmotic flow, respectively.

Finally, we note that correlation-based methods, such as PIV, will fundamentally
have a difficult time achieving accurate results. PTV approaches should tend to be
more successful, although they require low seeding densities in order to achieve
reliable particle–particle matching and thus might be more time consuming. An
approach that allows for high particle seeding densities while still obtaining an
ensemble velocity distribution is the statistical particle tracking velocimetry (SPTV)
(Guasto et al. 2006) which is ideal for this class of flows. Apparent velocities obtained
from SPTV measurements can be corrected using the algorithm outlined in the results
and discussion section to minimize diffusion and wall-induced measurement bias.

This work was supported by a cooperative research programme funded by Sandia
National Laboratory and the National Science Foundation.

Appendix. Lack of shear-induced lift force on near-wall submicron particles
It has been suggested that a shear-induced lift force can act on suspended particles in

a linear shear flow, making them more likely to move away from a solid boundary. This
would result in a non-uniform distribution of particles near wall where velocimetry
measurements take place. However, we believe that such a lift force is insignificant
for submicron particles, and in this Appendix, an established theory is presented to
support our argument.

The subject of lift forces acting on a small sphere in a wall-bounded linear shear
flow has been thoroughly studied by Cherukat & McLaughlin (1994). Here we will
present only the theory that applies to the flow conditions under consideration.
Suppose that a free-rotating rigid sphere of radius a is in a Newtonian incompressible
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fluid of kinematic viscosity ν and is in the vicinity of a solid wall. In the presence of a
linear shear flow, the free-rotating sphere travels at a velocity vp that is different from
the local fluid velocity vf . We can define a characteristic Reynolds number based on
the velocity difference vp − vf with

ReL =
(vp − vf ) a

ν
. (A 1)

Another characteristic Reynolds number based on shear rate can be defined as

ReS =
Sa2

ν
, (A 2)

where S is the wall shear rate. In this geometry, the wall can be considered as located
in the ‘inner region’ of flow around the particle if ReL � Z−1 and ReS � Z−2, where
Z ≡ z/a and z is the distance between the particle’s centre and the wall. For near-wall
particle velocimetry described in this paper, ReL ∼ ReS ∼ 10−7 while Z−1 ∼ O (1), and
thus the inner region theory of lift force applies.

For a flat wall located in the inner region of flow around a free-rotating particle, the
lift force FL which is perpendicular to the wall, is scaled by (Cherukat & McLaughlin
1994)

FL ∼ ReL · I, (A 3)

where I is a coefficient that can be numerically estimated by

I = [1.7631 + 0.3561Z−1 − 1.1837Z−2 + 0.845163Z−3]

− [3.21439Z + 2.6760 + 0.8248Z−1 − 0.4616Z−2]

(
ReS

ReL

)

+ [1.8081 + 0.879585Z−1 − 1.9009Z−2 + 0.98149Z−3]

(
ReS

ReL

)2

. (A 4)

Again for the velocimetry conditions described in this paper, I ∼ O
(
102

)
. Therefore

FL ∼ ReL · I � (10−7)
(
102

)
� 1, (A 5)

and the lift force acting on near-wall particles is insignificant and can be neglected
for all practical purposes.
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